Publications
All group authors are underlined.
PI: 52 peer reviewed articles + 1 book chapter + 5 conference proceedings, h-index 25, >3500 citations. See Google Scholar for recent citation data. Contact me if you have any questions, are interested in collaboration, or want to receive a full-text version of any of the publications.
Book chapters
- “First-Principles Calculations 1”, In Gallium Oxide, 309-328 (2020) [doi:10.1007/978-3-030-37153-1_17].
Journal articles (peer reviewed)
- “Mg Doping and Diffusion in (010) β-Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy”, Journal of Applied Physics 130, 235301 (2021) [doi:10.1063/5.0072611].
- “Properties of Orthorhombic Ga2O3 Alloyed with In2O3 and Al2O3”, Applied Physics Letters 119, 042104 (2021) [doi:10.1063/5.0060801].
- “Ultrafast Dynamics of Gallium Vacancy Charge States in β-Ga2O3, Physical Review Research 3, 023154 (2021) [doi:10.1103/PhysRevResearch.3.023154].
- “Mid-Infrared Interference Coatings with Excess Optical Loss below 10 ppm”, Optica 8, 686 (2021) [doi:10.1364/OPTICA.405938].
- “Ultrafast Hole Transfer from Monolayer ReS2 to Thin-Film F8ZnPc”, Applied Physics Letters 118, 153104 (2021) [doi:10.1063/5.0045710].
- “Orientation-Dependent Band Offsets between (AlxGa1-x)2O3 and Ga2O3”, Appl. Phys. Lett. 117, 252104 (2020) [doi:10.1063/5.0036072].
- “First-Principles Calculations of Hyperfine Interaction, Binding Energy, and Quadrupole Coupling for Shallow Donors in Silicon”, npj Comput. Mater. 6, 181 (2020) [doi:10.1038/s41524-020-00448-7].
- “First-Principles Surface Energies for Monoclinic Ga2O3 and Al2O3 and Consequences for Cracking of (AlxGa1-x)2O3”, APL Mater. 8, 091105 (2020) [doi:10.1063/5.0019915].
- “Intra- and Inter-Conduction Band Optical Absorption Processes in β-Ga2O3”, Appl. Phys. Lett. 117, 072103 (2020) [doi:10.1063/5.0016341].
- “Orthorhombic Alloys of Ga2O3 and Al2O3”, Appl. Phys. Lett. 116, 232102 (2020) [doi:10.1063/5.0010354].
- “Effect of Ti Induced Chemical Inhomogeneity on Crystal Structure, Electronic Structure and Optical Properties of Wide Band Gap Ga2O3”, Cryst. Growth Des. 20, 1422 (2020) [doi:10.1021/acs.cgd.9b00747].
- “First-Principles Study of Transport in WO3”, Phys. Rev. B 101, 045116 (2020) [doi:10.1103/PhysRevB.101.045116].
- “Ab Initio Study of Enhanced Thermal Conductivity in Ordered AlGaO3 Alloys”, Appl. Phys. Lett. 115, 242103 (2019) [doi:10.1063/1.5131755].
- “First-Principles Study of Electron-Phonon Interactions and Transport in Anatase TiO2”, Phys. Rev. B 100, 121113(R) (2019) [doi:10.1103/PhysRevB.100.121113].
- “Limitations of In2O3 as a Transparent Conducting Oxide”, Appl. Phys. Lett. 115, 082105 (2019) [doi:10.1063/1.5109569].
- “Phonon- and Charged-Impurity-Assisted Indirect Free-Carrier Absorption in Ga2O3”, Phys. Rev. B 100, 081202(R) (2019) [doi:10.1103/PhysRevB.100.081202].
- “Hydrogen-Induced Degradation of NaMnO2”, Chem. Mater. 31, 5224 (2019) [doi:10.1021/acs.chemmater.9b01458].
- “Deep Acceptors and Their Diffusion in Ga2O3”, APL Mater. 7, 022519 (2019) [doi:10.1063/1.5063807].
- “Structural and Electronic Properties of Ga2O3-Al2O3 Alloys”, Appl. Phys. Lett. 112, 242101 (2018) [doi:10.1063/1.5036991].
- “Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide”, MRS Commun. 8, 926–931 (2018) [doi:10.1557/mrc.2018.115].
- “First-principles study of direct and indirect optical absorption in BaSnO3”, Appl. Phys. Lett. 112, 062106 (2018) [doi:10.1063/1.5013641].
- “Sub-band-gap absorption in Ga2O3”, Appl. Phys. Lett. 111, 182104 (2017) [doi:10.1063/1.5001323].
- “Lack of quantum confinement in Ga2O3 nanolayers”, Phys. Rev. B 96, 081409(R) (2017) [doi:10.1103/PhysRevB.96.081409].
- “Electronic and protonic conduction in LaFeO3”, J. Mater. Chem. A 5, 15367 (2017) [doi:10.1039/C7TA04330A].
- “Controlling n-Type Doping in MoO3”, Chem. Mater. 29, 2563 (2017) [doi:10.1021/acs.chemmater.6b04479].
- “Fundamental limits on the electron mobility of β-Ga2O3”, J. Phys. Condens. Matter 29, 234001 (2017) [doi:10.1088/1361-648X/aa6f66].
- “Ab initio study of hydrogenic effective mass impurities in Si nanowires”, J. Phys. Condens. Matter 29, 095303 (2017) [doi:10.1088/1361-648X/aa5768].
- “Doping of Ga2O3 with transition metals”, Phys. Rev. B 94, 195203 (2016) [doi:10.1103/PhysRevB.94.195203].
- “Hydrogen intercalation in MoS2”, Phys. Rev. B 94, 085426 (2016) [doi:10.1103/PhysRevB.94.085426].
- “Free-carrier absorption in transparent conducting oxides: Phonon and impurity scattering in SnO2”, Phys. Rev. B 92, 235201 (2015) [doi:10.1103/PhysRevB.92.235201].
- “Impact of electric-field dependent dielectric constants on two-dimensional electron gases in complex oxides”, Appl. Phys. Lett. 107, 183505 (2015) [doi:10.1063/1.4935222].
- “Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films”, Sci. Rep. 5, 16996 (2015) [doi:10.1038/srep16996].
- “(InxGa1-x)2O3 alloys for transparent electronics”, Phys. Rev. B 92, 085206 (2015) [doi:10.1103/PhysRevB.92.085206].
- “Brillouin zone and band structure of β-Ga2O3”, Phys. status solidi B 252, 828 (2015) [doi:10.1002/pssb.201451551].
- “First-principles study of the mobility of SrTiO3”, Phys. Rev. B 90, 241204(R) (2014) [doi:10.1103/PhysRevB.90.241204].
- “Nature and evolution of the band-edge states in MoS2: From monolayer to bulk”, Phys. Rev. B 90, 205420 (2014) [doi:10.1103/PhysRevB.90.205420].
- “First-principles study of van der Waals interactions in MoS2 and MoO3”, J. Phys. Condens. Matter 26, 305502 (2014) [doi:10.1088/0953-8984/26/30/305502].
- “Elastic constants and pressure-induced effects in MoS2”, J. Phys. Chem. C 118, 12073 (2014) [doi:10.1021/jp503683h].
- “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes”, Appl. Phys. Lett. 104, 203111 (2014) [doi:10.1063/1.4879800].
- “Interplay between lattice dynamics and superconductivity in Nb3Sn thin films”, Phys. Rev. B 88, 045437 (2013) [doi:10.1103/PhysRevB.88.045437].
- “Effects of strain on band structure and effective masses in MoS2”, Phys. Rev. B. 86, 241401(R) (2012) [doi:10.1103/PhysRevB.86.241401].
- “Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2”, Appl. Phys. Lett. 100, 011914 (2012) [doi:10.1063/1.3671162].
- “Hydrogenated cation vacancies in semiconducting oxides”, J. Phys. Condens. Matter 23, 334212 (2011) [doi:10.1088/0953-8984/23/33/334212].
- “Vibrational properties of graphene fluoride and graphane”, Appl. Phys. Lett. 98, 051914 (2011) [doi:10.1063/1.3551712].
- “Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts”, Phys. Rev. B 83, 045306 (2011) [doi:10.1103/PhysRevB.83.045306].
- “First-principles investigation of graphene fluoride and graphane”, Phys. Rev. B 82, 195436 (2010) [doi:10.1103/PhysRevB.82.195436].
- “Electronic and dynamical properties of Si/Ge core-shell nanowires”, Phys. Rev. B 82, 113411 (2010) [doi:10.1103/PhysRevB.82.113411].
- “Phonons in Ge nanowires”, Appl. Phys. Lett. 95, 122110 (2009) [doi:10.1063/1.3236526].
- “Phonon band structure of Si nanowires: a stability analysis”, Nano Lett. 9, 107 (2009) [doi:10.1021/nl802613p].
- “Properties of B and P doped Ge nanowires”, Appl. Phys. Lett. 90, 263103 (2007) [doi:10.1063/1.2752107].
- “Dynamics of scattering on a classical two-dimensional artificial atom”, Phys. Rev. E 75, 036606 (2007) [doi:10.1103/PhysRevE.75.036606].
- “Formation and Segregation Energies of B and P Doped and BP Codoped Silicon Nanowires”, Nano Lett. 6, 2781 (2006) [doi:10.1021/nl061811p].
Conference proceedings
- “Impact of point defects on electrochromism in WO3”, Proc. SPIE 10533, Oxide-based Materials and Devices IX 10533, 105332C (2018) [doi:10.1117/12.2303688].
- “Multilayer Transition-Metal Dichalcogenide Channel Thin-Film Transistors”, IEEE IEDM Tech. Digest , 5.5.1 (2012) [doi:10.1109/IEDM.2012.6478985].
- “Free-Standing Si and Ge, and Ge/Si Core-Shell Semiconductor Nanowires”, Acta Phys. Pol. A 122, 294 (2012) [doi:10.12693/APhysPolA.122.294].
- “Phonon band structures of Si nanowires”, AIP Conf. Proc. 1199, 323 (2010) [doi:10.1063/1.3295432].
- “First-principles study of doped Si and Ge nanowires”, Phys. E 40, 2169 (2008) [doi:10.1016/j.physe.2007.10.090].